

FNAL Overview

Donald Petravick

Head, Computation and Communication Fabrics Dept

Fermi National Accelerator Lab

Overview of FNAL as a facility.

Three large computing facilities.

Feynman Computing Center

Grid Computing Center

Lattice QCD Computing Center

FCC -

STK Powderhorn, ADIC AML/2

Grid Computing Center

2000 sq foot tape room being provided

HEP Data basics

- Statistical Science
- Phenomina: associated with collision of two or more particles at high energy.
- These "events" are typically ~ 1 MB.
- Packaged in files for handling.

Muon triggered B events

all charged tracks

Permanent Scientific Store at FNAL

- > 2.6 Petabytes
- ~100 tape drives
- Most data are currently written on LTO2, 9940B
- Data are also on LTO1, 9940, DLT
- Sizeable increases foreseen for CDF, D0 and LHC (CMS).

Permanence Features

- Only one copy of the data is typically kept.
- Write protect tabs are manipulated
- CRC of file is kept as meta-data.
 - Computed at ingest.
 - Random check after write.
 - Random checking of store independent of use.
 - Check When serving files
 - Check files in SS cache.

 Separation of roles on delete.

Tape faults investigated.

5/4/05

Access Characteristics (local)

- The Store is part of an HSM.
 - Data are actively read.
 - Reads from the store outnumber writes to the store
- FNAL-written Enstore software
 - Each tape drive is connected to Linux Mover Computer, which is connected to the campus LAN.

D0 Enstore System

- Ratio of reads to writes seems to be growing.
- Many thousands of mounts each day.

Access Characteristics (Grid)

- The Tape Stores are Grid storage elements
- Taps is behind disk buffers.
- Grid architecture recognized the need for "custodial stores"

ESnet Goal - 2007/2008

UltraLight Network: PHASE 2

- Move into production (2007)
- Optical switching fully enabled amongst primary sites
- Integrated international infrastructure

WAN operation Demonstrations

- 50-60 MB/sec of tape ingest Trans Atlantic, running for a month.
- 7 Gbit/sec Trans
 Atlantic, ingest to FNAL storage system
 (dCache) for a month
- Hope to show 40-50
 Gbit/sec at SC

FNAL library requirements

- Do (and seek to)
 have multple tape
 technologies
- Able to integrate many robot species.
- STK and LTO approved by stakeholders.

Open Science Grid Consortium

- The Open Science Grid (OSG) Consortium was formed in 2004 by teams from U.S. universities and national laboratories in order to build and support a production quality peta-scale Grid infrastructure for large scale science.
- Partners with EGEE, LCG and TerraGrid.
- Non US institutions.may be partners.
 - Case under consideration is when an application bring s in non US sites.

OSG participants

Two Important Technical Groups

- Storage (active for a year)
- Network (just forming)
- Buffering Storage and networking are complimentary activities.

Storage Technical Group

- The Storage Technical group is lead by Paul Sheldon (Vanderbilt) and Robert Kennedy (Fermilab).
- The main activity of the group is to deploy managed storage elements on the OSG.
 - Independently implemented, interoperating, SE are being deployed.
 - LBL DRM
 - Fermilab/DESY Dcache.
 - Interest in from the IBP people (Tennessee)

Network Technical Group

- The Network Technical group is lead by Shawn McKee(Michigan) and Donald Petravick (Fermilab).
- We are beginning to organize.
 - Have seeded a monitoring activity.
 - Want to consider the needs of the HEP experiments exploiting OSG.

OSG Last Tuesday

- For OSG-ITB
 - Integration Test Bed
- http://gocmon.uits.iupui.edu:8888/

FNAL Strengths

- Data Volume
 - Hemispheric Center for LHC CMS experiment.
 - Vigorous and Important RunII program,
 - SciDAC Lattice QCD
- Engagement
 - Very well connected for world-wide data serving.
 - Leadership roles in the LHC, OSG, SciDAC,
 - Active software developer in LHC storage system.
 - Active developer for in Permanent archives.
 - Facilities
- Facilities
 - Expanding facilities, including open lab technology showcase area in Feynman Computing Center.
 - Tremendous Global connectivity

Enough about that

Library Drivers

- Diverse locations for FNAL data sets.
 - New 200 sq ft space is ~1 mile away.
- Yet more data.
- End of life for AML/2.
- Powderhorn:
 - EOL issues
 - Drive diversity issues.

Tape status

- Considerable experience with IBM LTO and STK drives.
 - Experience with both drive species is comparable.
- Stakeholders like the diverse technology approach.
- Helical Drives are viewed as needing extensive evaluation and analysis.
- Linear drives are thought to be easier to qualify.
- Active steps are needed to assure

 5/4/0consistently good quality for open market

Tape Alternatives Status

- Must be considered if ATL investments are large.
- Disk:
 - Literal tape replacement
 - Possible in the enstore framework
 - Custodial raid issues
 - Positive low-level over-write protection
 - Complex, compared totally passive tape
 - May lose all files on disk failure
 - Demanding on infrastructure (floor space, etc)
- Optical:

Library Desiderata

- Procure units of ~5000 ~10000 slots for production.
- Heterogeneous libraries is our current model.
- Diverse drives can be supported by diverse libraries. (Though within a library is good)
- Stakeholder expect LTO, STK support.
- Libraries should be compatible with long term roadmaps beyond what the stakeholders can see.
- Large expenses will motivate a search for
 alternatives. D. Petravick Library motiviations

FNAL Summary

- Well connected to networks and deployment of applications
- Well skilled and experienced -- permanent scientific archive is a specialized skill.
 - Leadership roles in many areas.
 - Prominent demonstrations at iGrid and SC.
- Expanding and modernizing facilities
- Wanting a few good partners.